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Case Study 1. Quantitative estimates for the computational requirements
of single particle cryo-EM studies

Compute for image processing: Large data sizes require computationally
intensive image processing. The Relion software for cryo-EM image processing, which is
fully open source and developed by an academic research team [1], has been successfully
ported onto GPUs to increase computational speed [2]. An image processing cluster for
cryo-EM would ideally be comprised of several Quad P100 tesla nodes, with the option
of large memory (24GB per card) P40 Dual tesla cards, for reconstruction of larger
complexes. While an atomistic reconstruction of a virus with a diameter of ∼ 50nm is
possible with the larger memory GPU, anything bigger requires an efficiently parallel
CPU cluster, which are common architectures in universities with good HPC facilities.
A typical atomic reconstruction may require several days of GPU processing power.
Heterogeneous samples, however, require more computing. Heterogeneity may arise due
to protein composition, or due to conformational flexibility, which offers an exciting new
prospect for cryo-EM to be used to study dynamics, in addition to structure. To
perform the averaging necessary to increase the signal to noise sufficiently for high
resolution structure determination, heterogeneous samples need to first be classified into
homogeneous datasets, which requires very large datasets, and more user intervention,
which will require bioscientists to have strong computational skills.

Cryo-EM data sizes: The FEI Falcon-3 detector in the Asbury Biostructure
Laboratory at the University of Leeds collects 4096 × 4096 pixels for each image. Each
pixel requires 4 bytes of storage space on disk. The camera actually collects
“micrograph movies” at a rate of ∼ 100− 140 per hour. Each movie consists of 38 frames
per second with a 2 second exposure time. For a typical single particle dataset, data
collection takes around 48 hours, we thus collect:

4 bytes ×
(4096 × 4096) pixels per frame ×

76 frames ×
140 movies per hour ×

48 hours

= 3.4 × 1013 bytes

= 34 TB per dataset

This is the absolute upper limit for the amount of data that can be collected.
Typically, the Titan Krios generates between 5 and 8TB per day, depending on the grid
type, automation software and data collection parameters. Data streams of even this
smaller size require significant upgrades to the networking infrastructure typically found
in Universities. For example, at the University of Leeds, each Titan Krios, and each
computational resource used for EM image processing, is connected by uncontested
10GB Ethernet to a dedicated GPFS filestore. The size of these datasets, and the
resulting difficulties in moving them around, are a key impediment to the potential
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adoption of cloud compute resources in this area. Future detector upgrades (see below)
will require adoption of even faster networking technologies.

For archival purposes, the size of a dataset can be reduced by a factor of ∼ 40×, if
only drift-corrected, and dose-weighted averaged images are retained. In practice,
researchers store raw frame data for a nominal period of time, before deciding that a
reduced dataset is sufficient, which is then archived for at least a 10-year period, at the
behest of research funders. A more pragmatic approach may actually be to discard the
data, but place the cryo-EM grid that generated the images into long-term storage
under liquid nitrogen. A new dataset could be subsequently be collected much more
cheaply than storing the original images.

34 TB per dataset

40 (after drift correction)
× 365

2
≈ 160 TB per year per Titan Krios

The next generation of detectors are already being delivered, and are capable of
capturing 5760 × 4092 pixels at a rate ∼ 3.5× as fast as the Falcon-3 detector. Such a
detector would therefore produce ∼ 5 times the quantity of raw image data. In 10 years’
time, a hypothetical detector may achieve:

(16, 000 × 16, 000) pixels ×
120 Hz ×

280 exposures per hour

≈ 34 TB per hour

Even if the frame data were almost immediately discarded after corrections were
applied, this would still result in a staggering data volume of around 10TB per day, all
of which would need to be archived.

While we are still very far from overcoming the experimental barriers necessary to
achieve this goal, one ambition of structural biology is to generate an atomic resolution
structure of a cell. To estimate the volume of imaging data this would require:

Assume each voxel is 1Å in size (which comfortably provides a resolution ∼ 3Å).
Assume the volume of a typical eukaryotic cell is ∼ 5µm3.
At 1Å per voxel, we require 1.25 × 1014 voxels. As each voxel requires 4 bytes, a
3D reconstruction of the cell at atomic resolution would require 500TB of storage.

This is only two orders of magnitude smaller that the whole dataset curated by the
EBI [3]. Good statistical averages would then require thousands of measurements.
Given these data, biologists will look for differences between different cell types from
the molecular level upwards, and compare diseased and healthy states. However,
biological time-scales span many orders of magnitude, from nanoseconds for
atomic-scale thermal fluctuations, to milliseconds for dynamic molecular processes such
as transcription, to years for amyloid formation, and the associated onset of
neurodegenerative disease. Consequently, the growing requirement for data storage in
the biosciences is unlikely to reach saturation, as the complexity of molecular biology
looks set to remain far greater than our knowledge for the foreseeable future.

Going below the atomistic level with XFELS: Biology is powered by chemical
reactions. Therefore, to gain a full mechanistic understanding of molecular biology we
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need to probe the time (fs-ps) and length-scales (Å) associated with electron transfer
during enzyme catalyzed reactions. X-ray Free Electron Lasers (XFELS) provide
particularly high peak brilliance, improved beam coherence compared to synchrotron
generated X-rays, and can be generated as short pulses in the 10-100fs regime, which
enables them to probe biochemical reactions [4]. XFELS have been used to determine
the structural dynamics of photoisomerisation following photon capture by photoactive
yellow protein microcrystals over fs to ps time-scales [5], and to monitor changes in
protein structure and dynamics in the carbymonoxide myoglobin complex on photolysis
of the Fe-CO bond [6]. In both cases, complementary computer simulations at the
quantum mechanical level were used to interpret the experimental data. XFELS brings
their own new set of computational challenges. Firstly, the data output is vast: 50GB
per second [7] (equivalent to ∼ 200 times the current output of cryo-EM). Moreover, the
interpretation of the data is non-trivial, and requires bespoke software implementing
new quantum physics algorithms [8].

Case Study 2. Data storage sizes for an atomistic map of C. elegans
C. Elegans is the model organism for eukaryotic species. It contains 2000 cells. Here

we estimate the data storage requirements for tracking the position of every atom in C.
elegans at 1µs intervals throughout the lifetime of the worm. In principle this could
either be provided by MD simulations (assuming perfect performance of MD forcefields
and many orders or magnitude improvement in the computational efficiency of MD
codes), or using a hypothetical future imaging device capable of sampling at these
speeds and resolutions.

1014 atoms in the cell requires 500TB of storage (for cryo-EM)
2000 cells in C. elegans = 1 × 106 TB of data per snapshot

Collect data every 1µs throughout the 15 day lifetime of the worm
15 days = 1.3 × 106s

1.3 × 106s/1µs = 1.3 × 1012 snapshots required.

This needs as storage:
1 × 106 TB × 1.3 × 1012 = 1.3 × 1018TB.

For sampling, you would need at least 10,000 datasets.
C. elegans would require 1.3 × 1022 TB of storage as a comprehensive time series at the

atomistic level.

An atomistic MD simulation would provide a slightly larger dataset, because each
voxel in the cryo-EM image is only 4 bytes, whereas storing atomistic coordinates needs
around 10 bytes.

These enormous data sizes will be required to turn measurements at this level of
detail into insight and understanding of the molecular life cycle of the worm. A robust
test of physical understanding of a system is whether we are able to reproduce its
behaviour through computer modelling. A “smart simulation” of C elegans requires
considerable coarse-graining from atomistic resolution, and-or multi-scale switching (34).
For example, if protein diffusion, docking, enzymatic function can be adequately
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described by a “block-translation-rotation” approach then for most of the computation
a protein can be represented as a collection of one “coarse-grained atom” per domain.
The reduction in the number of effective atoms in the system is typically of order 103. If
individual proteins are considered as the irreducible units in the model, further
simplifications are possible, and more still if elements of sub-cellular architecture, such
as microtubules, and then the cytoskeleton, can be represented at individual entities.
The question is then: how do we construct a series of models at different spatial
resolutions that correctly capture the relevant biophysics at each length-scale? How do
we then couple these models together, so that information can flow between the various
length-scales?

Coarse graining in length also permits coarse-graining in time. If a diffusive
dispersion relation is assumed so that τ ∼ r2 then the temporal coarse-gaining gives
another 102 in data reduction for each 103 reduction in the number of number of units
considered in space. We can obtain a more substantial reduction in data sizes if we
assume that a new computational regime occurs whenever the number of atoms changes
by 103. If adequate sampling requires two of these regimes to be explored, then
sampling of ns dynamics requires ms time-scales, and so on. Therefore, sampling at
each regime requires 106 snapshots. Such a coarse-graining strategy reduces the
required dataset from 1018 TB per cell to 108 TB (see Table S1), which is still a
staggeringly large number.

Table A. Data size reductions that achieved by coarse-graining at
multiple time and length-scales.

Irreducible element Number of
elements
per cell

Storage per
snapshot
per cell

Relevant
time-scale

Sampling
time-scale

Size of
dataset for
this regime

Atoms 1014 500 TB 1 ns 1 ms 5 × 108 TB
Proteins 1011 0.5 TB 1 µs 1 s 5 × 105 TB
Macromolecular complexes 108 0.5 GB 1 ms 103 s 500 TB
Sub-cellular elements e.g.
organelles, cyctoskeleton

105 0.5 MB 1 s 106 s 0.5 TB

Appendix 1. Research Computing, Enterprise IT and bioscience
computation support

What Research Computing is, and what it is not: Research Computing is
the innovative use of computer hardware and software to enhance research by providing
computational implementations of scientific ideas, models and procedures. It
complements theoretical and experimental approaches; providing insight from modelling,
such as in silico drug screening, or molecular dynamics (MD) simulations of proteins, or
the analysis of protein-protein interaction networks. It is becoming increasingly integral
to the experimental biosciences, particularly in bioinformatics, but also increasingly for
cryo-EM and other imaging techniques. The nature of research requires flexibility and
agility, and also the ability to fail without catastrophic consequences. Developing such
bespoke solutions can be challenging to implement within administratively heavy IT
service management frameworks (e.g. ITIL [9]) while many of the computational
requirements of the biosciences may not be sufficiently novel regarding computational
procedures to qualify as computer science research. Therefore, while it is currently
convenient for institutions to place Research Computing into existing organizational IT
services structures it needs to be recognized as performing a distinct function [10].
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Research Computing needs to intersect constructively both with academic computer
science, so that their novel methods can be rapidly integrated into the biosciences, and
with technology service providers, so that core IT infrastructure is robustly maintained.
This integration requires a holistic understanding of computer science, of the
management of computing systems and of the relevant technical issues within the
biosciences. Agile software development practices, such as DevOps [11], have led to
emerging practices of ResOps and SciOps when applied to scientific computing and
research. These approaches encourage intimate collaboration between operational teams
and research/product development teams. New ideas including automation, continuous
testing and continual requirements re-prioritization, are engendering a culture that is
highly effective in research, including in the biosciences (e.g. ResOps@EBI [12]).

Research Computing compared to Enterprise IT: Given the growing role of
computing in bioscience research, and the increasing scale of the facilities employed, it is
instructive to compare Research Computing with the computing systems and software
deployed to support organisations generally, which is known as “Enterprise IT”, and
which is treated as an operational cost (see Table B).

Table B. Research Computing comparison with Enterprise IT
The goals of Enterprise IT are normally centered around cost-efficiency, targeting

consistently high service levels through systematic and repeatable delivery processes.
Research Computing has to be effective, and this often requires the use of innovative,
flexible and adaptive approaches to yield new (and sometimes unexpected) insights.
Research-oriented institutions must be able to support both Research Computing and
Enterprise IT working alongside each other (so called bimodal operation). In addition
to operational efficiency, Research Computing support relies on other metrics (such as
publication and citation data and its impact) to demonstrate the value it adds. While
much bioscience software is developed within academic teams or embedded in national
facilities, in some institutions HPC service teams and increasingly software engineers
may be located in IT services [13]. Teaching Research Computing skills (see the section
on Building computational skills for the biosciences) is another opportunity for IT
service providers and academics to closely collaborate and exchange ideas.
Undergraduate teaching opportunities also provide a route to make a wholly academic
career path (e.g. lectureships) for Research Software Engineers (RSEs) viable at
universities, because the need for undergraduate teaching provides a long-term financial
future for such appointments.
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Research Computing Enterprise IT

Key
mission

To accelerate research and im-
prove consistency and repeatabil-
ity by making use of the scientific
method to define the resource mix
needed to solve scientific prob-
lems.

To efficiently support operational
activity in any enterprise or or-
ganisation.

Objective
of compu-
tational
facility

To provide scientific insight as
part of the scientific method, of-
ten through intensive computing
(e.g. HPC), requiring data anal-
ysis, simulation and modelling
across a wide range of domains.

Transactional and “systems of
record”1, supporting all key en-
terprise activities and processes,
including business decision mak-
ing.

Computer
platforms

Diverse computer platforms, in-
cluding specialist HPC and vi-
sualization tools, where software
and hardware may be tightly in-
tegrated.

Standard and virtualised plat-
forms with software which is
largely platform independent.

Software
and devel-
opment

Research software is mostly devel-
oped by research students, post-
docs or RSEs, and is driven by
the interests of the academic
team. Open source software is
considered best practise.

Often closed source software,
with an emphasis on “buy, not
build”.

Activity
life cycles

Oriented around fixed length re-
search project cycles, often with
project usage limits and alloca-
tions.

Oriented around business cycles,
e.g.financial years or operational
activities.

Client
devices
and
platforms

Highly diverse, including mobile
devices (e.g. for clinical trials),
laboratory equipment, sensors,
wearable technologies and now In-
ternet of Things (IoT).

Covers full range of client devices,
printers, networks, WiFi etc.

Staff
knowledge
and skills

Requires IT or other professionals
e.g. HPC or RSE experts, to have
good levels of understanding of
research domains and disciplines
e.g. physical sciences, biosciences,
social sciences.

Requires IT professionals and
business relationship managers to
have a high level of understand-
ing across client disciplines e.g.
finance, HR, operations to fulfill
project/service requirements.

Data
curation
and
protection

Subject to data protection, pa-
tient confidentiality, ethic com-
mittee scrutiny and funding body
requirements, including the Open
Science agenda.

Subject to data protection and
wider legal requirements.
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